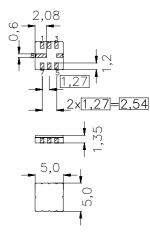


SAW Components

Data Sheet B3571

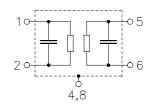
SAW Components B3571 **Low-loss Filter** 868,60 MHz **Data Sheet**


Ceramic package QCC8C

Features

- RF low-loss filter for remote control receivers
- Package for Surface Mounted Technology (SMT)

Terminals


Ni, gold plated

typ. dimensions in mm, approx. weight 0,1 g

Pin configuration

2 1,3 6 5,7	Input Input Ground Output Output Ground
4,8	Case - Ground

Туре	Ordering code	Marking and package according to	Packing according to	
B3571	B39871-B3571-U310	C61157-A7-A56	F61074-V8070-Z000	

Electrostactic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T _A	-45/+90	°C	
Storage temperature range	T _{stg}	-45/+90	°C	
DC voltage	V _{DC}	0	V	
Source power	P_S	0	dBm	source impedance 50 Ω

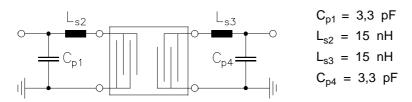
SAW Components					B3571
Low-loss Filter				868,	60 MHz
Data Sheet					
Characteristics					
Reference temperature: T_A	= 25 °(С			
			ning network		
Terminating load impedance: Z _L	= 50 Ω	and matcl	ning network	ζ.	
		min.	typ.	max.	
Center frequency	f _C	_	868,69		MHz
(center frequency between 3 dB points)					
Minimum insertion attenuation	α_{min}				
868,00 869,38 MHz	<u>.</u>	_	3,1	4,6	dB
Pass band (relative to α_{\min})					
868,00 869,38 MHz	<u>-</u>	_	1,5	3,0	dB
867,92 869,46 MHz	<u>.</u>	_	2,0	6,0	dB
Relative attenuation (relative to α_{min})	α_{rel}				
10,00 700,00 MHz		50	55		dB
700,00 830,00 MHz		33	38		dB
830,00 858,00 MHz		30	35	—	dB
858,00 866,40 MHz		20	25	—	dB
871,00 880,00 MHz		17	22	—	dB
880,00 910,00 MHz		30	35		dB
910,001000,00 MHz	<u>-</u>	33	38	—	dB
Impedance for pass band matching ²⁾					
Input: $Z_{IN} = R_{IN} \parallel C_{IN}$			226 2,30		Ω pF
Output: $Z_{OUT} = R_{OUT} C_{OUT}$		-	222 2,20	—	Ω pF
Temperature coefficient of frequency 1)	TC _f	-	-0,03	—	ppm/K ²
Frequency inversion point	T_0		25	_	°C

¹⁾Temperature dependence of f_C : $f_C(T_A) = f_C(T_0) (1 + TC_f(T_A - T_0)^2)$

²⁾ Impedance for passband matching bases on an ideal, perfect matching of the SAW filter to source- and to load impedance (here 50 Ohm). After the SAW filter is removed and input impedance into the input matching / output matching network is calculated.

The conjugate complex value of these characteristic impedances are the input and output impedances for flat passband. For more details, we refer to EPCOS application note #4.

3

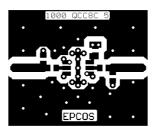


Data Sheet

SAW Components

Low-loss Filter

Matching network to 50 Ω (element values depend on pcb layout and equivalent circuit)



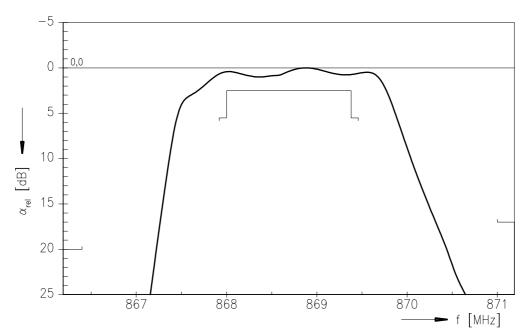
Minimising the crosstalk

For a good ultimate rejection a low crosstalk is necessary. Low crosstalk can be realised with a good RF layout.

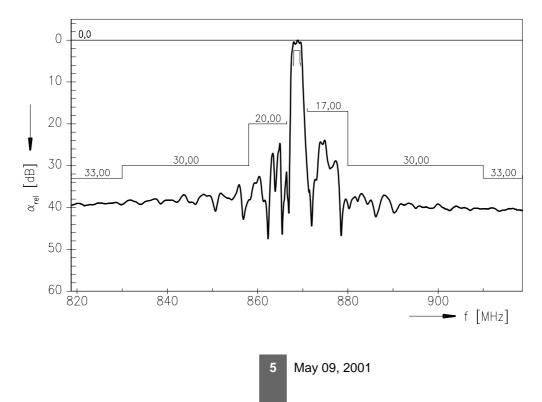
Grounding pins for input transducer are pin 1,3 and for output transducer 5,7. Close to those pins via holes (through holes) should be placed to achieve a low impedance path to system ground. If a grounding plane at the top side of the PCB is present, the grounding plane can be connected to pin 1,3,5,7 at the top side too.

The optimised PCB layout, including matching network for transformation to 50 Ohm, is shown here.

Optimised PCB layout for SAW filters in QCC8C package, pinning 2,6 (top side, scale 1:1)


The bottom side is a copper plane (system ground area).

For good contact of the upper grounding area with the lower side it is necessary to place enough via holes.



Data Sheet

Normalized frequency response

Normalized frequency response (wideband)

SAW Components	B3571
Low-loss Filter	868,60 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW CE AE PD P.O. Box 80 17 09, D-81617 München

© EPCOS AG 2001. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, prices and delivery please contact the sales offices of EPCOS AG or the international representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

